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ABSTRACT 

Let F be a free group and R _< F a characteristic subgroup. Automor-  

phisms of F/R which are induced by automorphisms of F are called t a m e .  

In this paper we use the X-tors ion invariant discovered by the first author  

and M. Lustig [LM] to show the existence of non- tame automorphisms of 

free central extensions and free nilpotent extensions of Burnside groups. 

0. In t roduc t ion  

Let F = F ,  be a free group of rank n > 2 on the set X = { X l , . . . , X n }  of free 

generators. If R is a characteristic subgroup of F then the natural mapping 

aR: F ~ FIR induces the mapping 0R: AutF --* Aut(F/R) of the corresponding 

automorphism groups. The automorphisms of the group FIR which belong to 

the image of 0R axe called tame.  More generally, if R is an arbitrary normal 

subgroup of F,  we call an automorphism ~0 of the group FIR t a m e  if there exists 

an automorphism ~01 of F such that ~l(R) = R and ~l induces the automorphism 

~o of FIR in the obvious way. 

The question of existence of non-tame automorphisms in general groups is 

stimulated by the classical result of Nielsen which describes the group AutF 

in terms of generators and relations (see [N]). In particular, this group can be 

generated by four elements. 
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Let 7e(G) denote the c-th term of the lower central series of a group G. Instead 

of 72(G) we usually write G ~ Bachmuth has proved that every free nilpotent 

group F/Tc+I(F) of class c > 3 and of rank n > 2 has non-tame automorphisms 

(see [B]). This result was previously partly proved by Andreadakis [A]. 

For free metabelian groups M,  = F,/F~' it was proved by Bachmuth and 

Mochizuki that the groups M2 and Mk, k > 4, have only tame automorphisms 

(see [BM1], IBM2]). However Chein showed that the group M3 has non-tame ones 

(see [C]). This shows that, sometimes, the rank of the group plays a sensitive role 

in this question. It was later proved that AutM3 is not even finitely generated 

(see [BM1]). 

The second author has proved the existence of non-tame automorphisms in 

the rather general situation of groups of the form F/Te(R), in particular, of free 

solvable non-metabelian groups of rank n > 4 (see [Shl]). Similar results have  

been obtained by C.K. Gupta and Levin (see [GL]). Both approaches of [Shl] 

and [GL] are based on finding necessary conditions for a matrix over a free group 

ring to be invertible. A rather strong and convenient necessary condition of that 

sort has been elaborated in [BGLM]. 

A different approach to the problem of finding non-tame automorphisms has 

been discovered recently by the first author and M. Lustig. They have found 

a new invariant for Nielsen equivalence classes of generating systems called A/- 

Torsion. Among other things, this invariant yields a necessary condition for an 

arbitrary automorphism of an arbitrary finitely generated group to be tame (see 

[LM]). 

In this paper, we use the approach of [LM] to find non-tame automorphisms 

of various group extensions. First we demonstrate our method by reproving 

Bachmuth's result on automorphisms of free nilpotent groups cited above. Then 

we consider free central extensions of free Burnside groups B(n,p) = F,/FPn 

where Fn p is the subgroup generated by all p-powers of elements of F, and p >_ 2 

is an arbitrary integer. We prove the following: 

THEOREM 0.1: The group Fn/[FPn,Fn] has non-tame automorphisms in the fol- 

lowing cases: 

(a) The exponent p is even; p > 4 and the rank n > 3; 

(b) The exponent p is odd; p > 3 and the rank n > 4. 

Remark 0.2: The free Burnside groups are known to have non-tame automor- 
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phisms as can be seen from the following example: 

Let F be the free group on {X1,X2} and p > 5. Let q, r be two integers 

relatively prime to p so that 1 < qr < p - 1. Let zi be the image of Xi under the 

natural epimorphism F2 --~ B(2,p). It is clear that the map ~: F/F p --* F/F p 
defined by ~(Xl) = x~, q0(x2) = x~ defines an automorphism of F/F v. If ~ lifts to 

~' E AutF then qd will induce an automorphism of Z@Z given by a 2 x 2-matrix: 

pk [q+PJ r + p m ]  forsomej, k,l, m E Z .  pl 

The determinant of this matrix is clearly not +l ;  hence a contradiction. | 

We furthermore consider free nilpotent extensions of periodic groups and prove: 

THEOREM 0.3: Let B(n,p) be the free Burnside group, then its free nilpotent 
extension F,/Vc(F~) has non-tame automorphisms for any rank n > 2 and c > 3. 

Remark 0.4: An endomorphism of F induces an automorphism of the group 

F/R' if and only if given any fully invariant subgroup V of F such that V <_ R' 

and the quotient R/V is nilpotent, it induces an automorphism of the group F/V 
(see [BG] Lemma 3.1). | 

COROLLARY 0.5: The group F/[%(FP.), F] has non-tame automorphisms for any 

rank n >_ 2 and c >_ 3. 

Proof: For c > 2 the group Vc(R)/[Tc(R), Fn] is the center of F,,/[Tc(R), F,~] (see 

[GG] and [Sh2]), hence it is a characteristic subgroup, so every automorphism 

of F,,/[%(F~), Fn] induces an automorphism of F,/Vc(FP,). Any non-tame au- 

tomorphism ~ of the group F,/%(F~), which exists by Theorem 0.3, induces 

some automorphism r of the group F,/[v~(FP,), F,]. This is an application of 

the cited Lemma 3.1 of [BG] for R = F~ and Y = [%(F~), F,]. Suppose r is 

tame; it induces the automorphism qo of F,/Tc(F~) which is therefore tame, a 

contradiction. | 

The case c = 2 which is not covered by Theorem 0.3 is interesting in view of 

the fact that the group F2/V2(R) has only tame automorphisms provided either 

R < F2' and the group ring Z(F2/R) is a domain, or the group G = F2/R is not 

cyclic, GIG ~ has at least one infinite cyclic factor, and the group ring ZG is an 

Ore domain which has only trivial units (see [BFM]). Theorem 0.6 below seems 

to be a nice complement to the cited result. 



20 Y. MORIAH AND V. SHPILRAIN Isr. J. Math. 

THEOREM 0.6: Let G be any group with the following property: The group ring 

Z(G) has a non-trivial unit such that its image/n the group ring Z(G/G')  is also 

a non-trivial unit. Then there is a presentation G = F IR  with F a free group, 

such that the group F /  R' has non-tame automorphisms. 

Using the characterization of abelian groups, the group rings of which have 

non-trivial units (see [Se]) we obtain the following: 

COROLLARY 0.7: Let A be an abelian group with torsion elements of order 5 or 

greater than 6. Then A has a presentation F / R  such that the group F/R '  has 

non-tame automorphisms. 

To conclude this section, we note that one and the same group might have two 

different presentations F1/R1 and F2/R2 such that one of them has non-tame 

automorphisms while another does not (see [LMR]). 

ACKNOWLEDGEMENT: The authors would like to thank the Mathematics 

Department of the Technion for its hospitality and stimulating atmosphere. 

1. Prel iminaries  

In this section we will review some results from [LM] which will allow us to 

recognize non-tame automorphisms. For proofs and further information see [LM]. 

Throughout the paper G denotes a finitely generated group with generators 

z = ( x l , . . . , z n } .  Let y --- ( y l , . . . , y , , }  be another generating system for G 

of the same cardinality. Let F ( X )  and F (Y )  denote the free groups on X = 

{ X 1 , . . . , X n }  and Y = {Y1, . . . ,Yn} respectively. Denote by /~x and ~/y the 

epimorphisms F ( X )  ~ G, F (Y )  --~ G given by Xi ~ xi and 1~ --* yi- 

De/~nition 1.1: The generating systems z, y are Nielsen equiva len t  if there is 

an isomorphism tr: F ( X )  ---, F (Y )  so that/~y- a =/~z. 

Note that  if ~: G ~ G is an automorphism it is clear that  if ~ is tame then the 

generating systems z = {z l , . . .  ,zn} and ~(z) = (~ (Z l ) , . . .  ,~(zn)} are Nielsen 

equivalent. 

Let di = O/OXi: Z F  ~ ZF ,  1 < i < n, denote the i-th Fox deriwation of 

the integral group ring Z F ( X )  (see IF]). It is a Z linear map with the following 

properties: 

(1) di(Xj) = 6ij; 

(2) di(nu -4- my) = ndi(u) + mdi(v); for u, v E F ( X )  and m, n E Z; 
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(3) di(uv) = di(u) + udi(v). 

The following Theorem II of [LM] gives us a tool to distinguish Nielsen in- 

equivalent generating systems of minimal eardinality. 

THEOREM II: Let G be presented by 

G --< z l , . . . , z , I IRa,R2, . . .  >, 

and let a second generating syst  Ul = w l ( x l , . . . ,  x , ) , . . . ,  y ,  = 

be given as words ha the zi. For any word w = w(z l , . . .  , z , )  E G let W denote 

the corresponding ~vord W = w(X~,...  , x , )  ~ F(X). Let ~w/azi  E ZG denote 

the image of the Fox derivative OW/OXi under the map flz: ZF(X)  ~ ZG, 

Xi ~ xi. 

Let A be a commutative ring with 1 E A, and let p: ZG ~ Mm(A), p(1) = 1, 

be a ring homomorphism so that p(#z(aR~/OXi)) = 0 for all Rk and Xi. If  

the determinant of the (ran x ran)-matrix p((Owj/Oxi)j,i) is not contained ha 

the subgroup of A* generated by the determinants of p(+z~) , . . . ,  p(-l-z,), then 

x l , . . . ,  z ,  and y l , . . . ,  y ,  are Nielsen haequivalent generating systems of G. 

We win use the notation of [LM] and denote the two-sided ideal (/~=(aR/aX~)ll 
R E kerflz) of ZG by I~. We furthermore remark that Proposition 2.5 of [LM] 

shows that representations into matrix rings as above do in fact exist. 

If R C F is a normal subgroup of the group F, we have a natural homomor- 

phism eR: Z F  --* Z(F/R) .  We denote kereR by AR. If R = F we just have the 

augmentation ideal AF of the group ring ZF. 

LEMMA 1.2: 

(a) Let J be an arbitrary ideal of the group rhag Z F  and let u E AF. Then 

u E JAF  f fand only f fdi(u) E J for each i, 1 < i < n; 

(b) Let Ul, 712 E F and [Vl,V2] = Y?lY~lYlT]2. Then: 

For proofs see IF]. 

The next lemma describes the group %(R) as a subgroup of the free group F 

determined by some ideal of the group ring Z F  in two ways. The first assertion 

is usually attributed to Magnus although in the form given here it was proved 

in [CFL] for the first time. The second assertion is due to Gruenberg (see [Gr] 

w 
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LEMMA 1.3: 

(a) 7o(R) = (AR ~ + 1) n F ,  c > 1; 

(b) ~o(R) = ( a a ~  + 1) n F ,  c > 2. 

We now illustrate our method by presenting non-tame automorphisms for free 

nilpotent groups. 

Example 1.4: Let G = F/%+I(F) be a free nilpotent group of an arbitrary 

class c ~ 3 and arbitrary rank n ~_ 2. Set ~ ( X 1 )  = Y1 " -  Xl[Xl,X2,Xl]; 
~(Xi) = l~ = Xi for i ~ 2. It is easy to check that ~ defines an automorphism 

of the group G. 

We check that ~ defines a non-tame automorphism of G. It follows from 

Lemmas 1.2 and 1.3 that for any g E 7c+1(F) and any i, 1 <~ i <~ n, di(g) G 

AFt;  hence di(g) E AF s. By sending X1, X2 --* t and Xi --* 1, i > 2, 

we obtain a homomorphism Z F  --* Z[t,t-1]. The ideal Ix is mapped to 0 in 

7.[t, t -1] / ( Im AF s) thus there is an induced homomorphism on the quotient rings 

ZG --* Z[t, t-ll/(ImAF s) (see [LM]). 

Consider the image 3~'  of the Jacobian matrix J ~  -- ( a~(z i ) /0z j )  in the 

commutative ring Z[t, t-~]. It is immediate that det J ~ '  =- dl(y~). Using Lemma 

1.2 (b) we calculate: 

d l (~ / l )  = 1 + z1(1 - z l ) ( 1  - z,2) + [Z l ,Z2 ]  - 1 ( rood AFS) .  

This yields that the determinant J~ is equal to 

(1) I -I- t(t - 1) 2 rood (Im(AFS)). 

The determinant J~ is not a trivial unit of Z[t, t -I] modulo the image of AF s. 

Indeed, the image of AF s consists of polynomials of the form P(t,t-l)(t - 1) 3. 

Were the expression (1) a trivial unit of Z[t,t  -z] modulo the image of AF s, we 

would have: 
1 ) 2  = _ 1 + - 1 )  3 

for some polynomial P(t, t -1) and some integer k. This is a contradiction because 

the polynomial on the left-hand side has 1 as a root of multiplicity two while the 

polynomial on the right-hand side has 1 as a root of multiplicity _< 1 or > 3. 

The proof is now completed by applying Theorem II to the case m = 1 and 

A *  = ( Z [ t ,  ". 
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2. Central  Extens ions  of  Burnside Groups  

It is natural, in light of Remark 0.2, to ask whether the central extensions of 

free Burnside groups G = F,,/[Fg,F,,] have non-tame automorphisms. As the 

abelianization of G is Z"  it is impossible to use the idea of the example in Remark 

0.2. In this section we will answer this question in the affirmative. The device 

with which we will determine this is Theorem II of [LM] which is an application 

of the A/'-torsion invariant. 

LEMMA 2.1: Assume n )_ 3. The map ~.:  G ~ G defined by 

= = = =-(c,,-%, L 
~ . ( z i )  = zi f o r i > 3  

is an automorphism. 

Proof." As [F. p, F~] is a fully invariant subgroup of F~ it is clear that ~,, is a 

homomorphism. To check that it is an automorphism it is sufficient to produce 

an inverse map. Consider the homomorphism $ . :  G ~ G defined by : 

where 

~ . ( z l )  = zP'z  -p-p'+p+lr" 1 2 "'8 t " l '  ~n(=2)=Zl(P--1)Z2"T'3rC2, 
i.~n(X,3 ) = Wl-P(P--1)--(P--1)-p2~'w2 "3 ~'3, ~ , ( Z i )  = z,, i > 3, 

C2 =x[x~(=lX2) -p, C3 ==~=~(=1=202) -p, C1 =C3021. 

A computation shows that ~ . ( $ . ( z j ) )  = zj  for each j .  | 

LEMMA 2.2: Let p )_ 4 be even. Then the automorphism ~,, is not tame. 

Proof: Consider the Jacobian matrix J ~  = (O~. (z i ) /Oz j ) ,  as in Theorem II. It 
is a diagonal block matrix over ZG with a (n - 3) x (n - 3)-identity block in the 
lower right corner and a (3 x 3)-block in the upper left corner of the form: 

l+z: + +x[ -I ~[ 

gO Q 1+~2+"" +z~ -1 
0 

/ .  
-x)  J 

We obtain a map Z[Fn/[Fnv, F,,]] ---} Z by sending z l , z s  --* -1 ,  x2,z, ---, 1, 

i _> 4, and extending linearly over Z [ F . / [ F .  v, F,,]]. The image of the Jacobian 
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matrix J~o is the (n x n)-bloek matrix with an (n - 3) x (n - 3)-identity block 

and a (3 x 3)-block 

p 1 
0 0 

It has determinant 1 - p .  

The group G = F,/[F~, F.] has a presentation: 

0 = <  x a , . . . , x ,  ll[gP, f], g , f  �9 F, >.  

We compute the image of cg[gP, f]/OXi over ZG denoted by O[g p, f]/cgxi as in 

Theorem II: 

O[g v, f]/Oxi = - gV(1 - f - l ) ( 1  + g +""  + gp-1)cgg/Oxi 

+ g-P f - l ( 1  - g)(1 + g + ' "  + gP-1)Of/Ozi 

The images in Z of each g, f E F are +1. As p is even, if g --~ -t-1 the second 

summand is 0. If g ~ 1 and f ~ - 1  the first summand is - 2 p  and if f ~ 1 

the first summand is 0. In any case the image of O[g v, f]/Ozi is contained in the 

ideal (2p) C Z for each f ,  g and zi �9 {zl,  . . . ,z ,} .  Thus we have a representation 

p: Z[F,/[F~, F,]] ~ Z/(2p) in which p(O[g v, f]/Ozi) = 0. We are now in position 

to apply Theorem II with m = 1 and A* = (Z/(2p))*. The trivial units p(zi) are 

+1. It is clear that  unlessp = 2 (p is even) p - 1  ~ 4-1 rood 2p. Thus, by Theorem 

IT, the generating systems z = {Zl, ..., z.} and W(x) = {W(x,), ..., W(x.)} are not 

Nielsen equivalent and hence ~ is not tame. | 

LEMMA 2.3: Assume n > 4. The map ~ , :  G ~ G de/]ned by 

~.p~.p~-I ,pp-~-I ,p'O'I 
2 3 X4' 

is an automorphism. 

Proof'. As [F~, F,] is a fully invariant subgroup of F. it is clear that ~o. is a 

homomorphism. To check that it is an automorphism it is sufficient to produce 

an inverse map. The homomorphism ~n induces an isomorphism ~b E GL(n, Z) 

on the abelianized group G/G ~ = Z". The matrix ~,~b is an (n X n)-block matrix 
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which is an (n - 4) • (n - 4)-identity block on the lower right comer and a 

(4 x 4)-matrix in the upper left corner of the form 

0 p p + l  p ] 
0 1 p 2 
p p + l  p + l  p + l  

p - 1  p p p 

The inverse to ~,~b is an (n x n)-block matrix ( ~ ) - 1  which is an ( . - 4 )  x (n-4) -  

identity block on the lower right corner and a (4 x 4)-matrix in the upper left 

corner of the form: 

12 0 p + 1_) - - 1  p ( p - 1 ) ( 2 ( p + l ) - p 2 )  p ( 2 ( p + l )  p2) 
0 p ( p -  1) _p2 

L -p + 1 1 _ps + 2p2 + 1 pS _ p 2  _ p 

Hence if ~0. has an inverse ~. then it must induce the map (~o~b) -1 on Z". Thus 

~. must be of the form: 

r z~x~-(P+~)CI, r 'x ~P-2z-lzP'-sP'+2z-p'+2p~+2P" 
nl, 2)  2 3 4 t"2,  

�9 ,(x.~) _ _pO.-1)_-p' ,- ,  _ - p + l _  _ -p%2p~- i  p~-p -p , - ,  
~-" ~ 1 ~ 3  2;4 t"3~ ~ n ( x 4 )  = ~1 ~2;~3 ~4 t'J4~ 

q}.(zi) = ziCi, i > 4, 

where C1, C2, Cs, C4, Ci, 5 < i < n, are unknown elements in the commutator 

subgroup of G. 

The compositions %.(~.(xi)) = xi give us equations in CI, C2, Cs, C4, C~. 

If these equations have solutions in the commutator subgroup of G then %. as 

above is an inverse to 7~.. The equations are: 

(0) xiCi = xi for 5 < i < n, and 

(1) �9 ~P(~12~1x~c2)p(XlC3)'+1(xlx2x~Ic, F = ~i, 

(2) �9 ~ - ~ ; ~  ~ c~( ~ c~),( ~1 ~ ; 1  c~)~ = ~ ,  
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( 4 )  z3PxP(T, -41C1)P-1(T ,12T,21x23C2)P(T,1C3)P(T,1T,2x31C4)P .~ X 4. 

So we need to present a solution to the equations for C1, C2, Cs, C4, C~. Set 

C~ = 1, for 5 < i < n. Equations (1) and (4) can be rewritten : 

(1") z'~r(z[ 2 z;lzlC2)V(xl C3)P(zl z~z[ 1C,) p = C-* 3 , 

(4*) x3Px~(x-~lC1)P(z'Z2z~lx~C2)V(xlCs)V(zlx2x{lC4) v = C1. 

Hence, as C1 and Cs are p-powers, we can assume without loss of generality that 

they are in the center of G. Set A = x~2x~lx~C2 and B = zlx2x~lC4. We can 

then rewrite the equations (1)-(4) as: 

( l ')  XP ~,--P t'~P+ 1 AP DP 
1"3  " 3  ,..'* . u -  ---- l ,  

(2') x'~IC~AB 2 = 1, 

(3') C p  f~p+ l ~ p - 1  ,~p+ l A p +  l R p + I  

(4') 

From (3') and (4') we obtain 

(5') 

From (1') and (3') we obtain 

(6') 

From (5') and (6') we obtain 

- - P ~ P ~ P - - I ~ p A p ~ p  

CxC3z~lxIAB= 1. 

C ~ z [ l z i A B =  1. 

(v') c~ = cr -1. 

From (6') we get AB = ClPXll~3 alia substituting this in (2') yields: 

(8') B = C~C~'x~Izlz2 and A = C~C~2Pz~lzsz'flz-flxs. 
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Thus, using (7'), we can solve for C~ and C4 in terms of C1 and {xx, ..., x,}. 

Substitute A , B  and (7') back in (1') and set A' = z ' Z l x s z ~ l x ' ~ l z s ,  B '  = x ~ l z l x 2 .  

We get: 

xP  ,n--P fTP ~ -  1 f~pa(p -- I ) ~ --2p a ( A t  ~P f~P a f7 _p2 (p -- I)  [ R '  ~P 
I ~ 3  V l  ~ 1  ~ 1  k ' "  / v 1  v 1  \ ~  / = 1. 

As C, is in the center we get C ~ ' ~ x ~ x ; ' ( A ' ) ' ( B ' ) "  = 1, i.e., 

= x x;P(z ' xsz x x 'x3 )P(x x xxx:) 

It is immediate to check that C1 and hence C3, are in the commutator subgroup 

of G. The fact that C2, C4 are also in the commutator subgroup folows from 

(8 t) and the definitions of A, B. Therefore we have solutions to the equations 

(0)-(4), and ~,, thus defined is an automorphism. | 

LEblMA 2.4: Let p be odd. Then the automorphism r is not tame. 

Proof." Consider the Jacobian matrix J~ .  It is a diagonal block matrix over Z G  
with a ( n -  4) x ( n -  4)-identity block on the lower right corner and a (4 x 4)-block 
on the upper left corner of the form (which, unfortunately, is too wide to fit in 
one line): 

0 1-t-x2+ �9 "- +x~ -1 
0 1 

1+~1+.. .  +x~- '  x~x~+' ( l+x~+. . .  + ~ )  
. X ' - b Z l + . . . ' - b z ~ - '  m~-' (1-bz~ q-...  q-x~-') 

�9 l 
m:(l+xa+. . .  +x~- ' )  x:x~( l+x4)  [ 

p p + l  p + l  p x~(l+x3+.. .+zPa) mix a x 2 ( l+x, -F . - -+x~)[  
x~-Ix~( l+xa+ .. .  +m~-') x~-1 x~x~(l+x. + -.. +x~-1) J 

We get a map Z[Fn/[F~, Fn]] "-~ Z[~], ~ = e 2hi~p, by sending zl ,  z4 ~ 1 and 

z2, xa ---* ~. The image of the above matrix is the following (4 • 4)-matrix over 
Z[~]" [ o1 

1 0 2~ 
1 ~2(p -t- 1) 

p 1 0 0 p 

with determinant _p2 _ (p _ 1)(_~2p + ~p + ~2) C Z[~]. As in Lemma 2.2 we 

compute: 

O[g", f ] /Ox,  = - gP(1 - / - ' ) ( 1  + g + . . .  -4- gV-1)Og/Ox, 

Jr g-m f - l ( 1  -- g)(1 -F g Jr... "Fm-1)Of/Ox, 
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I f g  - ,  ~'~ then O[g p,f] /Oxi  --* 0 and i f g  ~ 1, f ~ ~'~ then the second 

summand is mapped to 0 and the first summand is mapped to - ( 1  - ~-m)p. 

In both cases the image of O[g p, f]/Oxi is contained in the ideal generated by 

{((I -  -m)v)Ilm �9 Z} C ((I - C 

Thus we have obtained a representation p: Z[F,/[F~, F,]] ~ Z[~]/((1 - ~)p), 

= e 2"i/p, such that  p(O[gP, f]/Ozi) = 0. We can now apply Theorem II for the 

case m -- 1 and A* = (Z[~]/(1 - ~)V)*. We can conclude that the generating 

systems x = {Xl,..., } and = { (xl ), ..., are not Nielsen equi ent 

and hence ~0 is not tame if we can show that 

_p2 _ (p _ 1)(_~Zp + ~p + ~2) ~t +~m mod ((i - ~)p) C g[~]. 

LEMMA 2.5: Let p �9 g be odd where ~ = e 2~i/p, then: 

_p2 _ (p _ 1)(_~2p + ~p + ~2) ~ q_~m rood ((1 - ~)p) in g[~]. 

Proof: Note that  p = ~mp for each m # p in the ring R = g[~]/((1 - ~)p). Hence 

we have 
0 = (1 +~ ..~= ~2 "3 L ... jl_ ~p--1) : p .31_ p .3L ... jg_p :p2 

This implies that -p~ -(p- 1)(-~2p + ~p + ~2) = ~ _p in R. Notice that in R 

the element ~2 _ p is a unit as (~2 _ p)(~p-2 + p) = ~p + ~2p _ ~r-2p + p2 = 1. 

When multiplied by the trivial unit ~p-2 the image of the determinant ~2 _ p 

becomes (1 -p). Hence in order to prove the Lemma we need to show that 

(1 - p) # -t-~" mod ((1 - ~)p) in Z[~]. 

C A S E  (A): // '(1 - p )  = - ~ "  mod ((1 - ~)p) then (1 - p )  = - ~ "  + (1 - ~)pr for 

some r �9 g[{]. We multiply both sides by p to get p - p2 = _{rap + (1 - {)pr' 

or 2/) �9 ((1 - {)p) in Z[{]. But then 2 �9 (1 - {). Recall that 1 - { is not invertible 

in Z[~] and 2 # 0 in g/pg  = Z[~]/(1 - ~). 

C A S E  (B): LI e (1 - -  p )  = ~m mod ((1 - ~)p) then (1 - p) = ~"  + (1 - ~)pr for 

some r �9 Z[~]. But then 1 - ~"  = (1 - ~)pr + p. This is a contradiction as the 

coefficients of the polynomial on the left hand side are not divisible by p but  the 

coefficients of the polynomial on the right hand side are, and p is not a unit in 

Z[~]. t 

This concludes the proof of Lemma 2.4. | 

P roof  of  Theorem 0.1: Theorem 0.1 is an immediate consequence of Lemmas 

2.1, 2.2, 2.3 and 2.4. | 
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3. Free Nilpotent Extensions of Burnside Groups 

In this section we prove Theorem 0.3 and Theorem 0.6. 

Proof of Theorem 0.3: Let B(n,p)  be the free Burnside group and Gc = 

F~/Vc(F~) its nilpotent extension. Define a map ~: F,, --* F,, by ~(X1) = 

Y1 = XI[X~,X~,X1];  ~(Xi)  = Yi = Xi  for i _> 2. As ~o induees the identity map 

modulo 72(R) = R', R = F~, we can apply Lemma 3.1 of [BG] and conclude 

that ~ induces an automorphism ~ of the group Gc. 

We check now that ~ defines a non-tame automorphism of G~. It follows from 

Lemmas 1.2 and 1.3 that for any g E 7c(R) and any i, 1 <_ i (_ n, di(g) E 

A~ -~ hencedi(g)  E A~.  By sendingX~, X~ ~ t and Xi ~ 1 , i > 2, we 

obtain a homomorphism ZFn ~ Z[t , t  -1] and the ideal I ,  is mapped to 0 in 

Z[t, t -1]/(Im A2R). As before there is an induced homomorphism on the quotient 
rings Z a  --, Z[t, t -1] /(Im AF s) (see [LM]). 

Consider now the image JT '  of the Jacobian matrix J~a = (O~(zi)/Oxj) in 

the commutative ring Z[t,t-~]. It is immediate that det J~a ~ = Imdl(y~). Using 

Lemma 1.2 (b) we calculate: 

dl(yl)  = 1 + z,(1 - xa)(1 - zg)(1 + z ,  + . . .  + z~-l)(  mod A~). 

This yields that the determinant J~o ~ is equal to 

(1) 1 + t(t - 1)(t '  - 1)(1 + t + . . .  + t ' - ' )  mod (Im(A~)). 

The determinant J~a I is not a trivial unit of Z[t, t -1] modulo the image of A~. 

Indeed, the image of A~ consists of polynomials of the form P(t,  t -x)( t  v - 1) 2. 

Were the expression (1) a trivial unit of Z[t,t -~] modulo the image of A~, we 

would have: 

t ( t -  1)(t p -  1)(1 + t  + . - - + t  p- l )  = 4-t k -  1 + P ( t , t - 1 ) ( t  p - 1) 2 

for some polynomial P(t,  t -1) and some integer k. This is a contradiction because 

the polynomial on the left-hand side has I as a root of multiplicity two while the 

polynomial on the right-hand side has 1 as a root of multiplicity < 1. The 

proof is now completed by applying Theorem II to the case m = 1 and A* = 

(Z[t, t -~]/Im(t i~))*,  m 

Proof of  Theorem 0.6: Let Zl, . . . , zn  be some minimal set of generators for 

the group G. Then there is a free group of rank n, Fn = F ( X I ,  . . . ,Xn) such 
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that  G has a presentation of the form F, /S .  Consider the free group F,~+I = 

F(X1, . . . ,X, ,Xn+I) of rank n + l  and its normal subgroup R generated by S and 

X , + I  (we consider F ,  to be naturally embedded in Fn+l). Clearly G = F,+I/R. 

We now present a non-tame automorphism of the group F,,+I/R I. 

There is a well-known action of the group ring Z(F/R),  F = F ,+I  on the 

abelian group R/R'  giving rise to the notion of relation module of F / R  (see [LS] 

p. 100). For h �9 F/R,  and r �9 R/R' ,  there is a map (h, r) ~ hrh -~ �9 R/R' .  

For an arbitrary v �9 Z(F/R)  extend this map Z-linearly. For any v �9 Z(F/R),  

r ~ will denote the result of the action of v on r rood R'. It is straight-forward to 

see that  di(r v) = vdi(r)( mod AR), 1 < i < n. 

As X , + I  is an element of the group R, this action is defined on X ,+ I  modulo 

R'. Choose a non-trivial unit U �9 Z(G) such that  its natural image u �9 Z(G/G') 

is also a non-trivial unit. Define a map ~: FIR  t ~ F / R  I by 

r Yn+l u = = X , + x ;  ~ ( X i ) = Y / = X i  f o r l < i < n .  

It is easy to see that ~ induces a homomorphism of the group FIR',  and it has 

an inverse defined by ]~ ~ Xi for 1 < i < n, Y-+I --* XV-~ + �9 

Consider the homomorphism Z(F/R) ~ Z(G/G'). It is immediate that the 

image of det J ~  is equal to u = Im(d,+l(Yn+l))  which is not a trivial unit of 

Z(G/G'). As any derivative of any element of R' is contained in AR the image 

of I~ is contained in (Ira AR). The proof is now completed by applying Theorem 

II to the case m = 1 and A" = (Z(G/G')/Im(AR))*. I 

References 

[A] 

[B] 

[BG] 

[BGLM] 

[BFM] 

S. Andrea~iakis, On the automorphisms of free groups and free nilpotent 
groups, Proc. London Math. Soc. (3) 15 (1965), 239-268. 

S. Ba~hmuth, Induced automorphlsms of free groups and free metabelian 
groups, Trans. Amer. Math. Soc. 122 (1966), 1-17. 

R. M. Bryant and C. K. Gupta, Characteristic subgroups of free centre-by- 
metabelian groups, J. London Math. Soc. (2) 29 (1984), 435-440. 

R. M. Bryant, C. K. Gupta, F. Levin and H. Y. Mochizuki, Non-tame auto- 

morphisms of free nilpotent groups, Commun. Algebra 18 (1990), 3619-3631. 

S. Bachmuth, E. Formaaek and H. Y. Mochizuki, IA-antomorphisms of cer- 
tain two-generator torsion-free groups, J. Algebra 40 (1976), 19-30. 



Vol. 84, 1993 NON-TAME AUTOMORPHISMS 31 

IBM1] 

[BM2] 

[C] 

[CFL] 

[F] 

[Gr] 

[GG] 

[GL] 

[LM] 

[LMR] 

[LS] 

[N] 

[Se] 

[Shl] 

[Sh2] 

S. Bachmuth and H. Y. Mochizuki, The non-finite generation ofAut(G), G 
free metabelian of rank 3, Trans. Amer. Math. Soc. 270 (1982), 693-700. 

S. Bachmuth and H. Y. Mochizuki, Aut(F) --, Aut (F/F")  is surjective for 

free group F of rank _> 4, Trans. Amer. Math. Soc. 292 (1985), 81-101. 

O. Chein, IA automorphisms of free and free metabellan groups, Comm. Pure 

Appl. Math. 21 (1968), 605-629. 

K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus. IV. The 

quotient goups of the lower central series, Ann. Math. (2) 68 (1958), 81-95. 

It. It. Fox, Free differential calculus. L Derivation in the free group ring, Ann. 

Math. (2) 57 (1953), 547-560. 

K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in 

Math., Vol. 143, Springer-Verlag, Berlin, 1970. 

C. K. Gupta and N. D. Gupta, Generalized Magnus embeddings and some 

applications, Math. Z. 160 (1978), 75-87. 

C. K. Gupta and F. Levin, Tame range of automorphism groups of free 

polynilpotent groups, Commun. Algebra 19 (1991), 2497-2500. 

M. Lustig and Y. Moriah, Generating systems of groups and Reidemeister- 

Whitehead torsion, J. Algebra, to appear. 

M. Lustig, Y. Moriah and G. Rosenberger, Automorphisms of Fuchsian 

groups and their lift to free groups, Can. J. Math. 1 XLI (1989), 123-131. 

R. Lyndon and P. Schupp, Combinatorial Group Theory, Ergebnisse der 
Mathematik 89, Springer-Verlag, Berlin, 1977. 

J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann 91 

(1924), 169-209. 

S.K. Sehgal, Units in commutative integral group rings, Math. J. Olmyama 

Univ. 14 (1970), 135-138. 

V. Shpilrain, On the centers of free central extensions of some groups, in 

Groups--Canberra 1989 (L. Kovacs, ed.), Lecture Notes in Math. 1456, 
Springer-Verlag, Berlin, 1990, pp. 181-184. 

V. Shpilrain, Automorphisms of FiR '  groups, Int. J. Algebra Comput. 1 

(1991), 177-184. 


